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Overview

Hybrid-Electric
Powertrains: A Rapid
Solution to Energy
and Environmental
Challenges

Overview of the Markov
Decision Process and
Deep Reinforcement
Learning (DRL)

Objective: Optimizing Hybrid-
Electric Powertrains with Deep
Reinforcement Learning for
Intelligent Energy Management
Systems

Application of
Reinforcement Learning
in Energy Management
System

Working Principle of
Reinforcement Learning
in Energy Management
System



Reinforcement Learning: Brief Recap

Reinforcement
Learning: I

Human Learns through this

A learning
Mechanism:

One of the

Foundation of Al:
Decision making improves with more experience



Advanced Application of Reinforcement Learning
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When we are still in a Naive stage



Advanced Application of Reinforcement Learning

Decision making improves with more experience



Introduction of Conventional and Electrified Powertrain

Fully Electric Vehicle

Edges over ICE-based vehicle:
* No emissions

» Highly efficient driving

* Regenerative braking
Drawbacks:

« Charging infrastructure

* Range Anxiety

» People’s perception

Conventional Powertrain

Edges over all-electric power train:
e Minimum refueling time

* Reasonable initial cost

* No compromise on performance
Drawbacks:

« Emission of toxic gases

* Inefficient driving

* Fuel consumption is very high

Differential

Generator



Introduction of Hybrid Electric Powertrain
Benefits of all electric powertrain Benefits of all conventional powertrain

However hybrid brings control complexity



Energy Management System: Fundamental Objectives
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Energy Management System: Industry’s Perspective
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Industry’s need from an EMS:

Real time implementable x

Optimal fuel consumption and GHG emissions %

Computationally cheap X

Charge sustaining for hybrid powertrains v

Global optimization based control:
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Electrified powertrain




Energy Management System: Industry’s Perspective

Industry’s need from an EMS:

Real time implementable v

Optimal fuel consumption and GHG emissions x

Computationally cheap v’

Charge sustaining for hybrid powertrains

Rule based control:
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Agent

Reinforcement Learning in Energy Management System
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Agent—environment interaction and the process of Markov decision process.

t=2

[ Model-free RL algorithms]

Value-based

[Q-learning [21]] [ SARSA[9] ]

Policy-based

[Fincd Q-iteration [23] ]

[Actor—Critic ] L PP707[24] }
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Application of Reinforcement Learning In Energy Management System
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anPUt State# 1}' Upd&tll’lg _( utput: Control#l)
E

(Input State# 2>_u Control ngine On/Off
: policy Output: Contrql#Z)
(Input State# N)—» A(S) Engine Operation

St.#1: Vehicle's speed, St.#2: Battery SOC,
St.#3: Vehicle's power demand, St.#4: Slope of road,
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Lets develop alearning based-control strategy whose

* Rules for choosing the optimal control changes periodically
 There is a specific algorithm for changing the “Rule”
 Charge sustaining for hybrid powertrains

« Computationally cheap



Working Principle of Reinforcement Learning in Energy Management System

Start

Vehicle enters into
the next time step

Next time step

The Reinforcement learning-
based EMS does not have
any idea of the entire drive
cycle

Sensors data (speed, SOC,
acc, Pedal pos.., etc.) are fed
as input to EMS as vehicle
runs

Control rule is no more arbitrary. But
exploitation-exploration ratio maintained

(Input State# 1)—» Updatlng _’< utput: Contr 01#)
(Input State# 2>_> Control Engine On/Off

; policy Output: Contrql#Z)
<Input State# N>—> A(s) Engine Operation

St.#1: Vehicle's speed, St.#2: Battery SOC,
St.#3: Vehicle's power demand, St.#4: Slope of road,

\

Reinforcement learning-based
EMS decides control action
based on arbitrary rule

RL based EMS observes the immediate
consequence and predicts long term

Based on predicted long-term consequences,
the learning Algorithm updates the control rules



Deep Reinforcement Learning (DRL)-Enhanced knowledge -Driven EMS
Implementation
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Results of Reinforcement Learning in Energy Management System
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Thank you
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