

Effects of 2-EHN additive's volume fraction and injection parameters on methanol auto-ignition combustion

Hyunsoo Kim, Seungwon Lee, Choongsik Bae*

Future Transport Power Laboratory Korea Advanced Institute of Science and Technology (KAIST)

KAIST FTP Laboratory

Introduction

Objectives

Method

Result & Discussion

Conclusion

Strengthened IMO strategy on GHG reductions (Jul. 2023. – MEPC 80)

<MEPC 80: Increased emission reduction ambitions in revised IMO GHG strategy (DNV, July 2023)>

IMO has drastically tightened regulations on Greenhouse Gas from 50% to 100% by 2050.

Introduction The need for alternative fuels in marine powertrains

• Applicable tech.

HYDRODYNAMICS

- Hull coating
- Hull form optimization
- Air lubrication
- Cleaning

- Electrification
- Biofuel
- Synthetic/hydrogen etc.

Alternative tech needed

- >20%
- Speed reduction
- Vessel utilization
- Vessel size
- Alternative routes

	The need f	or altern	native fuels	s in	marine	powertrains
--	------------	-----------	--------------	------	--------	-------------

Alternative	GHG Reduction Feasibility Potential (term)				
Low carbon fuels LNG, LPG, CNG		20-30 %	Short	Mid	long
	Hydrogen (Engine)	0-100 %	Short	Mid	long
Zara carbon fuelo	Methanol (e-Fuel)	20-100 %	Short	Mid	long
Zero carbon lueis	Ammonia	20-100 %	Short	Mid	long
	Biofuel	20-100 %	Short	Mid	long
	Electric propulsion(Battery)	0-100 %	Short	Mid	long
	Fuel cell	0-100 %	Short	Mid	long
Sustainable energy sources	Wind power	1-32 %	Short	Mid	long
	Solar energy	0-12 %	Short	Mid	long
	nuclear energy	0-100 %	Short	Mid	long

<Maritime Greenhouse Gas (GHG) Reduction Strategy Technology and Prospect, 2019, KRISO>

- Applicable technologies for reducing greenhouse gases in the shipping sector
- ➔ To achieve the ultimate 100% reduction goal, it is essential to apply alternative propulsion technologies including alternative fuel
 - the fuel and propulsion technologies to achieve the emission goals: carbon-free fuel applications: hydrogen, **methanol(green)**, ammonia, and biofuels

Introduction Alternative fuels for marine powertrains

Alternative fuels for marine powertrains

		Condition	Tank cizo	Drico			** Space requirement for different fuels				
*	Fuel types	for storage	(compared to MDO)	(compared to MDO)	Pros.	Cons.					
LNG	Fossil	-162°C	2.3	1.3	Low priceAbundant production	Limited carbon reductionMethane slipHigh price					
LPG	luei	47°C	1.74	1.2	Low priceAbundant production	High carbon content		LN	3	LNG	
Bio-Gas											
Bio diesel		Room Temp.	1	1	 Applicable to existing ships with minor modifications 	Supply instability	LH ₂	Metl	nanol		
СН₃ОН	Carbon	Room Temp.	2.3	1.5		High cost for carbon capture	-	Euture F	uels	Petrol	MDO
NH ₃	neutral fuel	-34°C or 10bar	4.1	1.2	 Low technical barrier Low price among carbon-neutral fuels 	ToxicityAbsence of law or regulation	*** bioge	nic		syntheti	
H ₂	-253°C or 700ba	-253°C or 700bar	7.6	Тоо	 Easy production by renewable energy electrolysis 	High priceHigh technical barrier	liquid	gaseous	liquid		gaseous
Battery		Room Temp.	Too big	High	Applicable for small ship	High priceLow energy densityShore power supply system	Vegetable oil FAME HVO Pyrolysis oil Methanol	Biomethane	F-T-Diesel OME		Hydrogen Methane Ammonia LPG

* MARITIME ASSESSMENT OF SELECTED ALTERNATIVE FUELS AND TECHNOLOGIES, DNV GL, 2019

** 7th Large Engine Symposium, ABC's DZ Dual Fuel Methanol engine, Anglo Belgian Corporation NV, 2022

*** 7th Large Engine Symposium, Research approaches and methods for future fuels and lubricants in marine applications, FVTR GmbH, 2022

→ Considering the high energy density requirements of ships, ammonia and methanol are being considered as alternative fuels

KAIST FTP Laboratory

Introduction Methanol as alternative fuel for marine engine

Molecules & state

- (Liquid state at room temp.)
- Methanol supply chain outlook

Alternative fuels shares outlook of shipyard output

- Easy to handle(Liquid) → technical constraints ↓↓↓
- Liquid fuel → High energy density (among alt. fuel)
- Single carbon \rightarrow No C-C bond \rightarrow low PM, NOx
- In the long run, E-fuel are main fuel for marine engine
 → Methanol: representative fuel for e-Fuel
- Plans to build green methanol production bases are underway in the whole world: guaranteed at least 730,000 tonnes/year by 2025

- Different properties from conventional fuel: density, evaporation, viscosity, penetration, diffusion of vapors etc...
- Low CN(Cetane number) Main issue
 - High auto-ignition temperature: low cetane number
 → strategy to improve ignition
 - High latent heat of vaporization
 → High octane number → Lower CN
- Required more injection volume due to low LHV
 - oxygen-containing fuel (partially oxidized) → low LHV
 - → required more injection volume → need to change injection system
 - Understanding how the characteristics different from the conventional fuel will differ in the process of combustion in IC engine
 - Various strategies to compensate for the low cetane number

[Comparison of Diesel and Methanol properties]

- Method of methanol fuel supply and combustion in the CI engine
 - how to improve auto-ignition properties (Low CN main issue of CI methanol engine)
 - Case 1. Dual fuel strategy: Methanol + pilot fuel(High CN igniter: Diesel, bio-diesel, DME...)
 - Case 2. Methanol ignition enhancer(=cetane booster:2-EHN, Beraid 3555M etc...) blending
 - In this case, because only single fuel is supplied, the facilities can become simpler.

Future Transport Power Laboratory KAIST FTP Laboratory

- 2-Ethylhexyl nitrate(2-EHN) **
 - 2-EHN Formula: C₈H₁₇NO₃
 - Combustion reaction: $C_8H_{17}NO_3 + 12.5 O_2 \rightarrow 8 CO_2 + 8.5 H_2O + NO_2$
 - The nitrate ester group (NO₃) which contains **oxygens** is easily decomposed during the combustion and releases oxygen, which helps the combustion of the fuel, which greatly improves the **auto-ignition performance**.

- In this study, by experimental methods the effect of the cetane booster(2-EHN) on methanol fuel's auto ignition performance is evaluated.

- The necessity for the research
 - Methanol is promising e-fuel for the HD field, especially marine engine
 - In the HD marine engine, higher torque is needed. So, even methanol is attempted to be burned by compression ignition strategy.
 - Especially, a substance called Cetane booster or Ignition Enhancer can be mixed with methanol to improve the auto-ignition performance.
- Objective of this research
 - Studying the basic mechanisms of combustion of methanol blened with 2-EHN, one of the ignition enhancer (Cetane booster) for actual engine application

Methodology of this research

- For the fundamental combustion research, (1) combustion visualization analysis and (2) combustion pressure analysis are appropriate
- By using CVCC(Constant volume combustion chamber), accurate images and pressures data are obtained.
- For comparing the spray characteristics, spray visualization experiment is conducted in CVCC firstly.
- And then, methanol combustion experiment is conducted in CVCC.

Spray visualization experiment setup

Apparatus for flame visualization

CVCC Specification						
Item	Unit	Value				
Volume	СС	1400				
Fuel supply	-	Common-rail DI				
Methanol injection pressure	bar	500				
Methanol injection duration	us	2500				

Experiment condition						
Parameters	Unit	Range				
Ambient composition	Air (after preburn)					
Ambient temperature	K	1000 ~ 1200				
Cetane booster (CB; 2-EHN) volume fraction	%	3,5,7,10				

Introduction

Objectives

Method

Results

- Spray experiment: Diesel vs Methanol
- Combustion experiment: The auto-ignition of methanol blended with cetane booster

Conclusion

Result Spray experiment: Diesel vs Methanol

Spray comparison under low ambient Temp. & pressure (500K, 10bar)

- Methanol has almost same spray pattern with diesel
- Under this low ambient Temp. & pressure condition, both diesel and methanol is hardly vaporized.

Result Spray experiment: Diesel vs Methanol

- Methanol has almost same spray pattern with diesel in high ambient Temp. & pressure condition also.
- Under high ambient Temp. & pressure condition, both diesel and methanol is vaporized similarly.

KAIST FTP Laboratory

Introduction

Objectives

Method

Results

- Spray experiment: Diesel vs Methanol
- Combustion experiment: The auto-ignition of methanol blended with cetane booster

Conclusion

Result Combustion experiment: The auto-ignition of methanol blended with cetane booster

- As fraction of CB(cetane booster) increases, aHRR(accumulated heat release rate) is increased
- Especially, in case of CB 03%, the methanol fuel was hardly burned. (OH chemiluminescence not detected)
- As CB increases, lift-off length(injector tip to flame distance) is decreased.
- As CB increases, ignition delay(measured by images and aHRR data both) is shortened.

KAIST FTP Laboratory

Result Combustion experiment: The auto-ignition of methanol blended with cetane booster

- As fraction of CB(cetane booster) increases, aHRR(accumulated heat release rate) is increased.
- In 1200K ambient condition, all CB case except 3% is burned similarly and the lift off length is also similar. (saturated)
- As CB increases, ignition delay(measured by images and aHRR data both) is shortened.

Accumulated heat release rate(aHRR) contour map depending on ambient condition & 2-EHN fraction(cetane booster, CB)

aHRR (J)

- 199.4

- 179.4

- 159.3

- 139.3

- 119.2

- 99.13

79.06

59.00

- Accumulated heat release rate(aHRR) can be an indicator of how much fuel is burned.
- The effect of **ambient temperature** is more **dominant** than the cetane booster(CB) fraction
- Under conditions of **ambient temperature less** than 1100K, even if the fraction of CB is 10%, the fuel still does not burn well.
- At **ambient temperature** above 1150K and the CB fraction more than 5%, the aHRR is **similarly saturated.** (maximum combustion eff. estimated) cf) Amb. T.=1200K, CB=10%: aHRR/LHV_{fuel} = 85%

Conclusion

Objective

- Studying the basic mechanisms of combustion of methanol blened with 2-EHN, one of the ignition enhancer (Cetane booster) for actual engine application
- Conclusion
 - The following results are derived by measuring the combustion image and pressure
 - As fraction of CB(cetane booster) increases, aHRR(accumulated heat release rate) is increased
 - As CB increases, ignition delay is shortened and lift-off length(injector tip to flame distance) is decreased.
 - The effect of **ambient temperature** is more **dominant** than the cetane booster(CB) fraction
 - At **ambient temperature** above 1150K and the CB fraction more than 5%, the aHRR is similarly saturated.
- Applying the results to combustion in engine
 - Based on CVCC experiment result, because more than 1150K ambient temperature is needed for stable combustion of methanol even in case of 10% of CB fraction, higher compression ratio CI engine is worth considering.
- Future works
 - **Multi-stage injection** to burn more fuel: Some reported that combustion efficiency can be increased.
 - : If **pilot fuel is injected before main fuel** injection, 2-EHN is spread over a wider and then initial combustion can become intensified.
 - Engine experiment: In CI engine, real performance and emission could be measured with fuel for methanol with 2-EHN

Thank you for your kind attention.

Presenting author

Hyunsoo Kim

MS, PhD Student

Future Transport Power Laboratory Dept. Mechanical Engineering KAIST

Tel.: +82 (0)42-350-3063 E-mail: <u>hsoo93@kaist.ac.kr</u> Web: <u>ftpl.kaist.ac.kr</u>

Corresponding author

Choongsik Bae

 $\textbf{Professor} \cdot \textbf{PhD} \cdot \textbf{FSAE}$

Future Transport Power Laboratory Dept. Mechanical Engineering KAIST

Tel.: +82 (0)42-350-3044 E-mail: <u>csbae@kaist.ac.kr</u> Web: <u>ftpl.kaist.ac.kr</u>