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How does a flame propagate?



How does a flame propagate?
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Cellular instabilities

Wrinkled flame front

Larger surface area

Flame acceleration

𝑟 ∝ 𝑡𝛼

𝑟c < 𝑟: 

laminar flame propagates

the onset of cracking 

on the surface

𝑟c = 𝑟: the enhancement of cellular 

instabilities leads to flame 

acceleration

•Darrieus–Landau instability

•Diffusive-thermal instability 

𝛼 = 1 𝛼 > 1

flame acceleration
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Flame front
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• When does self-acceleration occur? 
𝑟c : Critical flame radius for onset of flame acceleration

• Does the flame self-accelerate? 

𝑟 ∝ 𝑡𝛼 i.e. 𝛼 > 1

• Is self-accelerating flame self-similar?
𝛼 = constant

Flame acceleration
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• K. Tanaka, A. Ueda, Y. Kim, W. Kim, Process safety and environmental protection, 183 (2024) 645-652

Hydrogen-oxygen flame



Onset of self-acceleration

• K. Tanaka, A. Ueda, Y. Kim, W. Kim, Process safety and environmental protection, 183 (2024) 645-652



Onset of self-acceleration

G. Jomaas et al. J. Fluid Mech. 583 (2007) 1–26, JK. Bechtold, & M. Matalon, Combust. Flame, 67 (1987) 77-90. 

• For the linear analysis of Bechtold

and Matalon, 𝑃𝑒𝑐 expressed the 

influences due to Darrieus–Landau 

and diffusive-thermal instabilities.

𝑃𝑒𝑐 = 𝑃𝑒1 (𝜎) + 𝑍𝑒(𝐿𝑒 − 1) 𝑃𝑒2 (𝜎)



Onset of self-acceleration

• D Bradley et al., Combustion and Flame 149 (2007) 162-172

• W Kim et al., International Journal of Hydrogen Energy 43(2019) 12556-12564

• C. R. Bauwens et al Proceedings of the Combustion Institute 35 (2015) 2059-2066.

• A Ueda et al., Journal of the Energy Institute, 110 (2023) 101335

• When does self-acceleration occur? 
𝑟c : Critical flame radius for onset of flame acceleration

• Does the flame self-accelerate? 

𝑟 ∝ 𝑡𝛼 i.e. 𝛼 > 1

• Is self-accelerating flame self-similar?
𝛼 = constant



Experimental setup

N2

806 mm

Electrode

Quartz
window

195 L 27.4 L

H2-air

• Princeton Univ.

1. Dual chamber 

2. Inner cylinder ( 82.55 mm x 127 mm)

3. Outer cylinder ( 273.05 mm x 304.8 mm)

4. V = 0.679L, Up to 60 atm

5. Flame radius 25 mm

• Hiroshima Univ.

1. Dual chamber 

2. Inner cylinder (V = 27.4 L)

3. Outer cylinder (V = 195L)

4. Up to 10 atm

5. Flame radius 110 mm

S.D. Tse, D. Zhu and C.K. Law Rev. Sci. Instrum., 75 (2004) 233-239



Cellular flame images

Jomaas G. et al. J. Fluid Mech. 583 (2007) 1–26

Princeton Univ.

Pi = 0.5 MPa

 = 0.6

r = 15.4 mm

Hiroshima Univ.

Pi = 0.5 MPa

 = 0.6

r = 100 mm

• The flame radius r = 100 mm, measured by large dual-chamber in Hiroshima Univ. is much larger than r = 

15.4 mm of Princeton Univ. 
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Onset of self-acceleration
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• Spherical expanding flame self-accelerates in stoichiometric H2-air mixture.



Acceleration exponent, 𝑟 ∝ 𝑡𝛼(𝑟 ≫ 𝑟c)

[12] F. Wu, G. Jomass, C.K.Law, Proceedings of the Combustion Institute, 34 (2013) 937-945

• The increasing tendency of 𝛼 with a decrease in , and 𝛼 values increased with initial pressure. 

• The 𝛼 values seem to depend on the mixture and initial pressure.

• Nevertheless, this result demonstrates that the evaluated values of 𝛼 were underestimated, 

because the evaluation range might be located in the transition regime to self-turbulization. 

r = 20 mm
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Acceleration exponent, 𝑟 ∝ 𝑡𝛼(𝑟 ≫ 𝑟c)

10 mm
50 mm

(a) Small chamber (0.79 L) (b) Dual chamber (27.4 L)

r/rc < 1 r/rc = 1.6 r/rc = 5.2 r/rc = 9.8 r/rc = 13.8

[6] W. Kim et al., International Journal of Hydrogen Energy, 43 (2018) 12556-15564, [8] W. Kim et al., International Journal of Hydrogen Energy, 45 

(2020) 25608-25614. 

• The 𝛼 increased and saturated 𝛼 = 1.4 with an increase in 𝑟/𝑟𝑐.
• The transition regime to self-similar propagation has been observed at 𝑟/𝑟𝑐 > 10. 

• Self-similarity is observed, in which the value of 𝛼 remains nearly constant with further 

increase in 𝑟/𝑟𝑐. 
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in a 20 m diameter hemisphere.

[13] V Molkov et al., J. Phys. D: Appl. Phys. 39 (2006) 4366–4376, [14] V Molkov et al. Int. J. Hydrog. Energ 32 (2007) 2198–2205 [15] Y.A. Gostintsev et 
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Self-acceleration and Self-similarity

→ Fractals are typically self-similar patterns, where self-similar means they are "the same from 

near as from far". Fractals may be exactly the same at every scale

-Fractal pattern in nature-

Koch curve

Mandelbrot set

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor 

does lightning travel in a straight line."(Mandelbrot, 1983).
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Modification of the flame surface area

1m

𝑟 < 𝑟c 𝑟 = 𝑟c 𝑟 > 𝑟c

Laminar flame 

propagates spherically

Onset of turbulence 

𝑟c: critical radius

Fractal surface

Similar 

transformation

Flame surface area

𝐴c = 4𝑟c
2

𝐴L = 4𝑟2
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Estimation models
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-Understanding explosion from industry to space-

applied research

fundamental research

Explosion

safety Instability

Large-scale explosion 

(UT)

Hydrogen jet flame 

(JARI)

Fireball from 

hydrogen tank (UK)

environment

NH3→H2

Development energy system (ERTDF)

CH4+CO2

energy

Renewable energy

clean energy

space
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