Flame propagation characteristics in hydrogen-air mixtures

Wookyung Kim

Department of Mechanical Systems Engineering Hiroshima University

13TH CIMAC CASCADES (2024.08.15) QINGDAO, CHINA

How does a flame propagate?

Flame acceleration

- W. Kim et al., *International Journal of Hydrogen Energy*, 43 (2018) 12556-15564,
- W. Kim et al., *Journal of Loss Prevention in the Process Industries,* 60 (2019) 264-268.
- W. Kim et al., *International Journal of Hydrogen Energy*, 45 (2020) 25608-25614.

Flame acceleration

Cellular instabilities

•Darrieus–Landau instability •Diffusive-thermal instability

 $= 0.1$ MI a, $\varphi = 2.0$ $I_1 = 0.1$ MI a, $\varphi = 1$, $\delta = 0.31$ mm $Le < 1$, $\delta = 0.4$ $Le > 1, \delta = 0.31 \text{ mm}$ $Le < 1, \delta = 0.49 \text{ mm}$ $Le > 1, \delta = 0.04 \text{ mm}$ $Le < 1, \delta = 0.17 \text{ mm}$ $P_i = 0.1$ MPa, $\phi = 2.0$ $P_i = 0.1$ MPa, $\phi = 0.5$ $P_i = 0.5$ MPa, $\phi = 2.0$

 $P_i = 0.5 \text{ MPa}, \phi = 0.5$

- W. Kim et al., *International Journal of Hydrogen Energy*, 43 (2018) 12556-15564,
- W. Kim et al., *Journal of Loss Prevention in the Process Industries,* 60 (2019) 264-268.
- W. Kim et al., *International Journal of Hydrogen Energy*, 45 (2020) 25608-25614.

Flame acceleration

- W. Kim et al., *International Journal of Hydrogen Energy*, 43 (2018) 12556-15564,
- W. Kim et al., *Journal of Loss Prevention in the Process Industries,* 60 (2019) 264-268.
- W. Kim et al., *International Journal of Hydrogen Energy*, 45 (2020) 25608-25614.

Hydrogen-oxygen flame

 $r = 10.7$ mm, $t = 0.65$ ms $r = 20.1$ mm, $t = 1.20$ ms $r = 30.1$ mm, $t = 1.70$ ms $\phi = 0.2$

 $r = 10.6$ mm, $t = 0.20$ ms $r = 19.5$ mm, $t = 0.35$ ms $r = 29.0$ mm, $t = 0.50$ ms $\phi = 0.6$

 $r = 9.71$ mm, $t = 0.15$ ms $r = 20.8$ mm, $t = 0.30$ ms $r = 29.3$ mm, $t = 0.40$ ms $\phi = 1.0$

 $r = 9.51$ mm, $t = 0.15$ ms $r = 20.3$ mm, $t = 0.30$ ms $r = 28.0$ mm, $t = 0.40$ ms $\phi = 1.4$

• K. Tanaka, A. Ueda, Y. Kim, W. Kim, *Process safety and environmental protection*, 183 (2024) 645-652

• K. Tanaka, A. Ueda, Y. Kim, W. Kim, *Process safety and environmental protection*, 183 (2024) 645-652

• For the linear analysis of Bechtold and Matalon, Pe_c expressed the influences due to Darrieus–Landau and diffusive-thermal instabilities.

$$
Pe_c = Pe_1(\sigma) + Ze(Le - 1) Pe_2(\sigma)
$$

G. Jomaas et al. J. Fluid Mech. 583 (2007) 1–26, JK. Bechtold, & M. Matalon, Combust. Flame, 67 (1987) 77-90.

- D Bradley et al., Combustion and Flame 149 (2007) 162-172
- W Kim et al., International Journal of Hydrogen Energy 43(2019) 12556-12564
- C. R. Bauwens et al Proceedings of the Combustion Institute 35 (2015) 2059-2066.
- A Ueda et al., Journal of the Energy Institute, 110 (2023) 101335

Experimental setup

S.D. Tse, D. Zhu and C.K. Law Rev. Sci. Instrum., 75 (2004) 233-239

Cellular flame images

Princeton Univ. $P_i = 0.5 \text{ MPa}$ $\phi = 0.6$ $r = 15.4$ mm

Hiroshima Univ. $P_i = 0.5 \text{ MPa}$ $\phi = 0.6$ $r = 100$ mm

• The flame radius $r = 100$ mm, measured by large dual-chamber in Hiroshima Univ. is much larger than $r = 100$ 15.4 mm of Princeton Univ.

Jomaas G. et al. J. Fluid Mech. 583 (2007) 1–26

Cellular flame images

Princeton Univ.

 $P_i = 0.5 \text{ MPa}$ $\phi = 0.6$ $r = 15.4$ mm

Hiroshima Univ. $\overline{P}_i = 0.5 \text{ MPa}$ $\phi = 0.6$

 $r = 100$ mm

• The flame radius $r = 100$ mm, measured by large dual-chamber in Hiroshima Univ. is much larger than $r =$ 15.4 mm of Princeton Univ.

Jomaas G. et al. J. Fluid Mech. 583 (2007) 1–26

• Spherical expanding flame self-accelerates in stoichiometric H_2 -air mixture.

- The increasing tendency of α with a decrease in ϕ , and α values increased with initial pressure.
- The α values seem to depend on the mixture and initial pressure.
- Nevertheless, this result demonstrates that the evaluated values of α were underestimated, because the evaluation range might be located in the transition regime to self-turbulization.

[12] F. Wu, G. Jomass, C.K.Law, *Proceedings of the Combustion Institute*, 34 (2013) 937-945

- The increasing tendency of α with a decrease in ϕ , and α values increased with initial pressure.
- The α values seem to depend on the mixture and initial pressure.
- Nevertheless, this result demonstrates that the evaluated values of α were underestimated, because the evaluation range might be located in the transition regime to self-turbulization.

[12] F. Wu, G. Jomass, C.K.Law, *Proceedings of the Combustion Institute*, 34 (2013) 937-945

- The increasing tendency of α with a decrease in ϕ , and α values increased with initial pressure.
- The α values seem to depend on the mixture and initial pressure.
- Nevertheless, this result demonstrates that the evaluated values of α were underestimated, because the evaluation range might be located in the transition regime to self-turbulization.

[12] F. Wu, G. Jomass, C.K.Law, *Proceedings of the Combustion Institute*, 34 (2013) 937-945

- The α increased and saturated $\alpha = 1.4$ with an increase in r/r_c .
- The transition regime to self-similar propagation has been observed at $r/r_c > 10$.
- Self-similarity is observed, in which the value of α remains nearly constant with further increase in $r/r_{c\cdot}$

[6] W. Kim et al., *International Journal of Hydrogen Energy*, 43 (2018) 12556-15564, [8] W. Kim et al., *International Journal of Hydrogen Energy*, 45 (2020) 25608-25614.

- The α increased and saturated $\alpha = 1.4$ with an increase in r/r_c .
- The transition regime to self-similar propagation has been observed at $r/r_c > 10$.
- Self-similarity is observed, in which the value of α remains nearly constant with further increase in $r/r_{c\cdot}$

[6] W. Kim et al., *International Journal of Hydrogen Energy*, 43 (2018) 12556-15564, [8] W. Kim et al., *International Journal of Hydrogen Energy*, 45 (2020) 25608-25614.

- The α increased and saturated $\alpha = 1.4$ with an increase in r/r_c .
- The transition regime to self-similar propagation has been observed at $r/r_c > 10$.
- Self-similarity is observed, in which the value of α remains nearly constant with further increase in $r/r_{c\cdot}$

[13] V Molkov et al., J. Phys. D: Appl. Phys. 39 (2006) 4366–4376, [14] V Molkov et al. Int. J. Hydrog. Energ 32 (2007) 2198–2205 [15] Y.A. Gostintsev et al., Combust Explo Shock Waves, 24 (1988) 563-569

- The α increased and saturated $\alpha = 1.4$ with
- The transition regime to self-similar propa
- Self-similarity is observed, in which the value of increase in $r/r_{c\cdot}$

[13] V Molkov et al., J. Phys. D: Appl. Phys. 39 (2006) 4366–4376, [14] V Molkov et al. Int. J. Hydrog. Energ 32 (2007) 2198–2205 [15] Y.A. Gostintsev et al., Combust Explo Shock Waves, 24 (1988) 563-569

- The α increased and saturated $\alpha = 1.4$ with
- The transition regime to self-similar propa
- Self-similarity is observed, in which the value of increase in $r/r_{c\cdot}$
- .
-*Molkov, r/r_c* = 8.6 (r_{cs} = 1 m)
- *Gostinsev, r/r_c* = 8.6-10.3 (r_{cs} = 1-1.2 m)
- $r_c = 0.116$ m

$$
\bullet \qquad \alpha = 1.42
$$

[13] V Molkov et al., J. Phys. D: Appl. Phys. 39 (2006) 4366–4376, [14] V Molkov et al. Int. J. Hydrog. Energ 32 (2007) 2198–2205 [15] Y.A. Gostintsev et

- The α increased and saturated $\alpha = 1.4$ with
- The transition regime to self-similar propa
- ⁰

al., Combust Explo Shock Waves, 24 (1988) 563-569
 al., Combust Explo Shock Waves, 24 (1988) 563-569
 al., Combust Explo Shock Waves, 24 (1988) 563-569 Self-similarity is observed, in which the value of increase in $r/r_{c\cdot}$

[13] V Molkov et al., J. Phys. D: Appl. Phys. 39 (2006) 4366–4376, [14] V Molkov et al. Int. J. Hydrog. Energ 32 (2007) 2198–2205 [15] Y.A. Gostintsev et

Self-acceleration and Self-similarity -*Fractal pattern in nature*-

Koch curve

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line."(Mandelbrot, 1983).

→ **Fractals** are typically **self-similar patterns**, where self-similar means they are "**the same from near as from far**". Fractals may be exactly the same at every scale

Self-similar formation for Homologous sphere

D =2+d : Fractal dimension

Modification of the flame surface area

Estimation models

These models were in agreement with large-scale gas explosions.

- W. Kim et al., Int. J. Hydrogen Energy, 40 (2015) 11087-11092,
- V Molkov et al., J. Phys. D: Appl. Phys. 39 (2006) 4366–4376

-Understanding explosion from industry to space-

