CIMAC CASCADES 2018 in Kobe

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO., LTD. All rights Reserved

Technical Management Division Technical Department 3 Hiroaki Heima

Latest Solution for Utilizing Various Types of Gas Fuel in DAIHATSU DIESEL

0. Content

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

4. Gas Reformer

5. Development Schedule

12 4 4 4	ALL	25	212 1	NUARY	2	i i i i i
1 10	2	3-	4-1	5=	6	7
8	9:22-	10	11	12-	13	14-
15-	16-	17	18	19	2011	21-
22-	23	24-	25**	26	27-*	28~
29-	30	31-	1	2	з	4

6. Evaluation of Engine Performance

7. Conclusion

1. Company Introduction

2. Global Trend

3. Motivation

1. Introduction of DAIHATSU Group

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

1. History of DAIHATSU DIESEL GAS Engine

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO., LTD. All rights Reserved

Year	Event	Remarks
1907	6.0hp Gas Engine was manufactured in MOVER (HATSUDOUKI) MFG. Co., Ltd	TA
1908	15.0hp Gas engine was installed to Passenger boat in Nagasaki, Japan The first Gas-Fuel Engine ship in Japan.	6.0hp Gas Engine
1966	Established DAIHATSU DIESEL MFG Co., Ltd	Engine ship
1983~	Launched Spark Ignition type GAS Engine with Three-way Catalyst	
2005	Developed Lean burn Gas engine with Micro-Pilot ignition system Launched "MD2OG", "MD36G", "GK28G" .	GK28G – Shin Umeda Bld. Osaka
2013	Developed Dual Fuel Engine "DE28DF" with Micro Pilot ignition system.	DE28DF
2017	First Commercial Dual Fuel Engine was Shipped to our Customers.	

2. Global Trend

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

Reduction of GHG regarding Paris Agreement

• The Paris Agreement

- A) Holding the increase in the global average temperature to well below 2 °C above preindustrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change.
- B) Increasing the ability to adapt to the adverse impacts of climate change and foster climate resilience and low greenhouse gas emissions development, in a manner that does not threaten food production.

Individual countries achieve individually determined goal for GHG reduction. Engine Manufacturers have to offer the solution to reduce GHG emission.

2. Global Trend -Ocean Ship Industry-

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

Required EEDI

Reference to http://www.imo.org/

A) The Energy Efficiency Design Index (EEDI) was made mandatory for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships at MEPC 62 (July 2011) with the adoption of amendments to MARPOL Annex VI (resolution MEPC.203 (62)),

by Parties to MARPOL Annex VI. This was the first legally binding climate change treaty to be adopted since the Kyoto Protocol.

 $EEDI(g/ton mile) = \frac{CO_2 \ conversion \ Factor \times Fuel \ Consumptio(g/kWh) \times Output(kW)}{DWT(ton) \times ShipSpeed(mile/h)}$

Generally... Ship Speed decreases by about 15% in order to reduce 30% reduction of EEDI.

According to Required EEDI, Engine Manufacturers need to reduce CO₂ emission.

As a global trend, Gas Energy Demand will increase definitely. DDK is developing utilized technology for various types of Gas Fuel to meet Global Needs.

3. Motivation

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO., LTD. All rights Reserved

3. Motivation

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

DDK researched how to utilize both LNG and LPG in the same engine by reforming gas.

9

4. Gas Reformer

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO., LTD. All rights Reserved

10 DDK and Osaka Gas investigated Configuration Unit in order to minimize existing Gas Reformer

4. Gas Reformer

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

Study of Reformer Design Concept

- 1. Simplification of the reforming equipment configuration
- 2. Gas composition of reforming process
- 3. Fuel suitability for Gas engine

Check in Eng Test

Configuration		Propane	Unit 1	Unit 2	Unit 3
Gas Compo sition	C ₃ H ₈	100 %	0 %	0 %	7 %
	CH₄	0 %	68 %	77 %	92 %
	CO ₂	0 %	20 %	22 %	0 %
	Other Gas	0 %	12 %	1 %	1 %
Methane Number		34	108	120	99
Lower Heating Value [MJ/kg]			27	28	49

DDK and Osaka Gas studied the relationship between the Engine combustion and the gas composition. 11 Unit1 was chosen as Prototype Gas Reformer.

4. Gas Reformer

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

The prototype gas reformer was installed at DDK Moriyama Factory and conducted reformed gas evaluation test 12 with factory power generator.

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

5. Development Schedule

Copyright © 2018 DAIHATSU DIESEL MFG.CO., LTD. All rights Reserved

13 Various practical operation evaluation was carried out, and future long-term durability evaluation is ongoing.

6. Evaluation of Engine Performance

1. Gas Engine Test

Testing Gas

• City Gas and Reformed Gas were used

Test Purpose

- 1. Confirm the influence of reformed gas on operability of gas engine.
- 2. Evaluate for Deterioration Characteristics of Reforming Catalyst in the future term.

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

2. Gas Composition Test

Testing Gas

 Change mixing ratio of methane and propane respect to engine load.

Test Purpose

- 1. Optimize the amount of Reformed Gas Volume according to Engine Load to reduce Reforming Energy.
- 2. Risk Assessment of Leaking LPG into Engine directly in case something wrong with Gas Reformer.

Confirm combustion characteristics by changing the mixing ratio CH_4 and C_3H_8

DDK confirmed the reliability of Reformed Gas and the effect of mixing ratio through these Tests

6. Evaluation of Engine Performance

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

	Reformed Gas	City Gas
T1	120%	100%
T2	70%	100%

Time period T1 is 20% longer than that of City gas.

The lubrication temperature is lower during gas reforming test.

Time period T2 is 30% shorter than that of City gas.

High MN gas makes it possible to raise Engine Load quickly.

Start-up characteristic is slightly different because of the difference of initial lubrication oil temperature. 15 DDK confirmed the Reformed Gas contained 20% of CO₂ can be used as the same with Japanese City Gas.

6. Evaluation of Engine Performance

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

2. Gas Composition Test

Testing Gas

 Change mixing ratio of methane and propane respect to engine load.

Test Purpose

- 1. Optimize the amount of Reformed Gas Volume according to Engine Load to reduce Reforming Energy.
- 2. Risk Assessment of Leaking LPG into Engine directly in case something wrong with Gas Reformer.

Confirm combustion characteristics by changing the mixing ratio CH_4 and C_3H_8

16 DDK confirmed the combustion characteristics by changing Mixing Ratio of methane and propane.

7. Conclusion

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

- 1. Regarding the effective use of LPG which accounts for approximately 23% in the world ocean transport volume, DDK confirmed that reformed gas achieve the almost same output performance in case of using LNG.
- 2. By optimizing the system composition, We carried out downsize the Gas Reformer equipment considering shipboard loading.
- 3. DDK grasped the characteristics of MN in the low load region in the lean burn combustion and the influence on the combustion stability.
- 4. And now, reliability evaluation is ongoing in the long-term operation and the evaluation of deterioration characteristics of catalyst are also in progress.

CIMAC CASCADES 2018 in Kobe

DAIHATSU DIESEL MFG. CO., LTD. DAIHATSU

Copyright © 2018 DAIHATSU DIESEL MFG.CO.,LTD. All rights Reserved

Technical Management Division Technical Department 3 Hiroaki Heima

Thank you for your Attention

